1,479 research outputs found

    Effect of Classroom Team Building and Ropes and Challenges activities on a Student with an OHI Disability

    Get PDF
    This paper studies the effects of Team Building and Ropes and Challenge activities on a student diagnosed with an Other Health Impairment (OHI) disability. It is a case study of a 16 year student that has been previously diagnosed with ADHD, and receives specialized services for an OHI disability. It looks at the effects of participation in seven weeks of Team Building activities and a day of activities at the Ropes and Challenge course on student perception, teacher perception, on-task time and achievement on district-wide assessments. The researcher used student and teacher surveys to investigate student perception and teacher perception. The researcher used time-interval analysis to document on-task time and used results from district wide assessment to look for changes in reading and mathematics scores. The student had increases in his perception of his peer interactions. Teachers had an increase in their perception of the student\u27s ability to work independently, with peers and with school staff. An increase in on-task time was observed during the intervention, but was not maintained at the conclusion of the intervention. An increase in reading scores, but not mathematics scores were observed on district wide assessments. Further research should include a larger sample size, but this study shows growth achieved during participation in Team Building activities and the Ropes and Challenges course

    KM3NeT:a large underwater neutrino telescope in the Mediterranean Sea

    Full text link
    High energy neutrinos produced in astrophysical processes will allow for a new way of studying the universe. In order to detect the expected flux of high energy neutrinos from specific astrophysical sources, neutrino telescopes of a scale of a km^3 of water will be needed. A Northern Hemisphere detector is being proposed to be sited in a deep area of the Mediterranean Sea. This detector will provide complimentary sky coverage to the IceCube detector being built at the South Pole. The three neutrino telescope projects in the Mediterranean (ANTARES, NEMO and NESTOR) are partners in an effort to design, and build such a km^3 size neutrino telescope, the KM3NeT. The EU is funding a 3-year Design Study; the status of the Design Study is presented and some technical issues are discussed.Comment: 4 pages, 3 figures, Prepared for the 10th International Conference on Astroparticle and Underground Physics (TAUP 2007), Sendai, Japan, 11-15 Sep 200

    Neutrino Astrophysics in the cold: Amanda, Baikal and IceCube

    Full text link
    This talk review status and results from the two presently operating underwater/ice neutrino telescopes, NT-200 in Lake Baikal and Amanda-II at the South Pole. It also gives a description of the design and the expected performance of Icecube, the next-generation neutrino telescope at South Pole.Comment: Talk given at the Nobel Symposium on Neutrino Physics, Haga Slott, Sweden, 2004, 14 pages, 10 figure

    The Indirect Search for Dark Matter with IceCube

    Full text link
    We revisit the prospects for IceCube and similar kilometer-scale telescopes to detect neutrinos produced by the annihilation of weakly interacting massive dark matter particles (WIMPs) in the Sun. We emphasize that the astrophysics of the problem is understood; models can be observed or, alternatively, ruled out. In searching for a WIMP with spin-independent interactions with ordinary matter, IceCube is only competitive with direct detection experiments if the WIMP mass is sufficiently large. For spin-dependent interactions IceCube already has improved the best limits on spin-dependent WIMP cross sections by two orders of magnitude. This is largely due to the fact that models with significant spin-dependent couplings to protons are the least constrained and, at the same time, the most promising because of the efficient capture of WIMPs in the Sun. We identify models where dark matter particles are beyond the reach of any planned direct detection experiments while being within reach of neutrino telescopes. In summary, we find that, even when contemplating recent direct detection results, neutrino telescopes have the opportunity to play an important as well as complementary role in the search for particle dark matter.Comment: 17 pages, 10 figures, published in the New Journal of Physics 11 105019 http://www.iop.org/EJ/abstract/1367-2630/11/10/105019, new version submitted to correct Abstract in origina

    Astrophysical Neutrino Telescopes

    Full text link
    This review describes telescopes designed to study neutrinos from astrophysical sources. These sources include the Sun and Supernovae emitting neutrino energies up to tens of MeV, atmospheric neutrino sources caused by cosmic ray interactions and other sources generating neutrino energies ranging up to 1Ă—10201\times 10^{20} eV. Measurements with these telescopes also provide information on neutrino properties including clear evidence for neutrino flavor change. Telescopes in operation in the past and present are described, along with plans for future instruments to expand this rapidly growing field of particle astrophysics.Comment: 28 pages, 31 figures, Invited review article submitted to Review of Scientific Instruments May 19, 200

    Flux of Primordial Monopoles

    Get PDF
    We discuss how in supersymmetric models with D and F-flat directions, a primordial monopole flux of order 10^{-16} - 10^{-18} cm^{-2} sec^{-1} sr^{-1} can coexist with the observed baryon asymmetry. A modified Affleck-Dine scenario yields the desired asymmetry if the monopoles are superheavy (~ 10^{13}-10^{18} GeV). For lighter monopoles with masses ~ 10^{9}-10^{12} GeV, the baryon asymmetry can arise via TeV scale leptogenesis.Comment: 17 pages, 4 figures, revtex

    Gneiss-charnockite transformation at Kottavattam, Southern Kerala (India)

    Get PDF
    At Kottavattam, leucocratic granitic garnet-biotite gneisses (age less than 2 Ga) were partially transformed to coarse-grained charnockite along a system of conjugate fractures (N70E and N20W) and the foliation planes (N60 to 80W; dip 80 to 90 SW) about 550 m.y. ago. To examine and quantify changes in fabric, mineralogy, pore fluids and chemical composition associated with this process, large rock specimens showing gneiss-charnockite transition were studied in detail. The results of the present study corroborate the concept that charnockite formation at Kottavattam is an internally-generated phenomenon and was not triggered by the influx of carbonic fluids from a deep-seated source. It is suggested that charnockitization was caused by the following mechanism: (1) near-isothermal decompression during uplift of the gneiss complex led to an increase of the pore fluid pressure (P sub fluid greater than P sub lith) which - in a regime of anisotropic stress - triggered or at least promoted the development of conjugate fractures; (2) the simultaneous release of pore fluids from bursting fluid inclusions and their escape into the developing fracture system resulted in a drop of fluid pressure; and (3) the internal generation and buffering of the fluids and their, probably, limited migration in an entirely granitic rock system explains the absence of any significant metasomatic mass transfer
    • …
    corecore